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CENTER OF PLANNING 
AND ECONOMIC RESEARCH 

The Center of Planning and Economic Re-
search (KEPE) was founded in 1961 as an 
autonomous public organization, under the 
title "Center of Economic Research!", its basic 
objective being research into the problems of 
the operation, structure and development of 
the Greek economy. Another of its objectives 
was the training of young Greek economists in 
modern methods of economic analysis and re­
search. For the establishment and operation 
of thè Center considerable financial aid was 
provided by foreign foundations. 

During 1964, the Center of Economic Re­
search was reorganized into its present form, 
as the Center of Planning and Economic Re­
search. In addition to its function as a Re­
search ana Training Institute, the Center, in its 
new form, was assigned the following tasks by 
the State: (1) the preparation of economic 
development plans at a national and regional 
level, (2) the evaluation of public investment 
programmes, and (3) the study of short-term 
developments in the Greek economy and ad-
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vising on current problems of economic policy. 
For the realization of these aims, the KEPE, 

during its first years of operation (1961-1966) 
collaborated with foreign scientists and foun­
dations. The latter helped in the selection of 
foreign economists who joined the Center to 
carry out scientific research into the problems 
of the Greek economy and in the organization 
of an exchange programme, including the post­
graduate training of young Greek economists 
at universities abroad. 

The Center has also developed a broad pro­
gramme of scholarships for post-graduate stud­
ies in economics. Thus, in collaboration with 
foreign universities and international organi­
zations, a number of young economists from 
Greece are sent abroad each year to special­
ize in the various fields of economics. In ad­
dition, the KEPE organizes a series of train­
ing seminars and lectures, frequently given 
by distinguished foreign scholars invited for 
that purpose to Greece. 

In addition to the above, the KEPE main­
tains contact with similar institutions abroad, 
and exchanges publications and information 
concerning developments in methods of eco­
nomic research, thus contributing to the pro­
motion of the science of economics in the 
country. 
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SPLINE FUNCTIONS FITTED 
BY STANDARD REGRESSION METHODS 

It sometimes happens that when a new mathe­
matical or statistical procedure is adopted 
from one discipline into another, it arrives 
complete with terminology, usage and (these 
days) computer software devised for speci­
alized application to problems in the parent 
area. This is probably inevitable, but until the 
new method is more broadly perceived its' 
application may fall considerably short of po­
tential in the adopting discipline. A recent 
example is the spline function. Briefly put, 
spline functions are a device for approximating 
the shape of a curvilinear stochastic function 
without the necessity of pre-specifying the 
mathematical form of the function. That is, it 
is unnecessary to restrict the estimate to a 
straight line, a polynomial of pre-specified 
degree, an exponential, or any other particular 
form. 

Brought over from engineering and the math­
ematics of interpolation, spline functions have 
appeared in several places in economic statistics 
in recent years. Application to economic prob­
lems has been made by Barth, Kraft and Kraft 
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(1976), McGee and Carlton (1970) and Poitier 
(1973, 1976). Buse and Lim (1977) have shown 
spline functions to be a special case of restrict­
ed least squares. Yet because the idea is still 
wrapped in its original packaging, it is fre­
quently overlooked when it might be a powerful 
adjunct to research. 

Moreover, even in some of the work where 
the spline function has been employed, it has 
not always been used to best advantage. For 
example, Barth and others in the article cited 
above, although admitting that it might improve 
their analysis to employ a multivariate spline 
function, were constrained by the fact that the 
software package at their disposal "unfor­
tunately . . . permits only bivariate specifica­
tion." Yet, in fact, the procedure is readily 
adapted to bivariate or multivariate analysis. 

In this article we show that by use of appro­
priately defined composite variables, spline func­
tions are easily fitted by any standard package 
for ordinary least squares regression. Some 
of the examples given below were fitted by the 
familiar SPSS package, others were fitted by 
members of an undergraduate class in econo­
metrics at the University of Hawaii, using the 
TSP routine. 

In the presentation, piece-wise linear regres­
sion is employed as a general introduction to 
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the procedure. This is followed by develop­
ment of the bivariate and the multivariate spline 
function. The procedures are then illustrated 
by their application to the relationship of in­
terest rates to money supply and inflation. 
Once the spline function is understood as a least 
squares regression model, additional varia­
tions become possible. As an example, we 
present a modified or "truncated" spline func­
tion and apply it to the relationship of fertil­
ity to per capita income. We conclude with a 
few general remarks on the limitations of the 
method. 

Piece-wise Linear Regression 

This procedure is already widely known and 
is reviewed here only to facilitate exposition 
of the nature of the spline function. The prob­
lem is illustrated in Figure 1. Given the scat­
ter of observations, a linear relationship would 
be a poor fit, nor is it clear that any readily 
available polynomial would be much of an 
improvement. As an alternative, one can fit a 
series of linear regressions, one to each of the 
segments marked off on the axis. The desired 
relationship would be : 

(1) Y = [β! +b1(X-X0)]D1 + [a2 +(X-X1)]D2 + 
[a3+ (X—X2)]D3+u 
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where Di is a dummy variable whose value is 
1 for all observations such that Xi_i<X<Xi 
and is otherwise zero. 

FIGURE ι 

PIECE-WISE LINEAR REGRESSION 

X 0 X] X2 X3 
X 

Unfortunately, a regression in form (1) will, 
in general, be discontinuous at Xi and X2, 
but the discontinuity can be obviated if the 
values of the coefficients are constrained so 
that 

(2) a2 = a i + b 1 ( X 1 - X 0 ) 
a8 = a2 + b2 (X2 — Xx) 
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Substituting (2) into (1) and combining terms 
with like coefficients, we get 

(3) Y = ftl + b t [(X —X^Dx + (Χχ—X0)D2 + (X2-X,)D J 
+ b2 [(X—XJD, + (X2-X!)D3] 
+ b 3 [ (X-X 2 )D 3 ]+u 

(The alert reader will note that further simpli­
fication of (3) is possible, but it is adequate 
for our purpose as it stands.) 

Formulation (3) converts the piece-wise lin­
ear approximation into a multiple regression 
in which the dependent variable Y is regressed 
on three composite variables whose values are 
constructed from the data for X, from the 
values of the Xi at which the function is to 
bend, together with the widths of the respective 
intervals and the three dummy variables. The 
constructed variables are readily generated by 
transformation programs included in most soft­
ware packages for multiple regression, but 
could be calculated by hand if necessary. 

Spline Functions 

Piece-wise linear regression suffers from two 
obvious shortcomings. First, although the func­
tion itself is continuous, its derivatives are 
not. Discontinuity of derivatives at the kinks 
can prove a serious disadvantage in many 
economic applications where the result would 
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be discontinuous—and probably spurious—shifts 
in elasticities, marginals, or other relationships 
that would becloud analysis: Secondly, a curvi­
linear relationship may provide a signifi­
cantly better fit to the data than is obtained 
from linear segments. This consideration is 
especially important when we are confronted 
by a complicated curve without obvious criti­
cal positions to which linear segments could 
be fitted. If the Xi are to be located arbitrarily, 
we had better not rely on linear approximation 
to map out the function between them. 

Spline functions overcome these disadvan­
tages by replacing the linear approximations 
of (1) by a system of piece-wise polynomial 
approximations. Any degree of polynomial could 
be employed, but the cubic is convenient for 
most purposes. The nature of the cubic spline 
is illustrated in Figure 2. The X axis has been 
divided into three segments by the points X0, 
Xl5 X2 and X3. In spline theory, the points 
chosen are called "knots". This is as good a term 
as any and will be employed hereafter. For 
convenience, the intervals between the knots 
have been taken as equal. This is not an essen­
tial part of the procedure, but equality of in­
terval is generally advisable unless there is 
important reason to do otherwise. More than 
four knots, and correspondingly more than 
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three intervals can be used, but, as we will see 
below, the more intervals there are, the great­
er the number of composite variables required 
to fit the curve and the greater the loss of 
degrees of freedom. 

FIGURE 2 
PIECE-WISE POLYNOMIAL REGRESSION 

! 
! 

X 0 X 1 X 2 X 3 

It is now proposed to fit a regression in the 
form 

(4) Y = Κ + b x ( X - X0) + C l (X-X 0 ) 2 + dx (X—X0)
3]D1 + 

[a2 + b 2 ( X - Xi) + c2 (X-Xj) 2 + d2 ( X — X ^ D a + 
[a3 + b 3 ( X - X2) + c3 (X-X 2 ) 2 + d3 (X—X2)

3]D3 

+ u 
Again, Dj is a dummy variable defined by the 
i-th interval. 
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In general, of course, (4) is discontinuous at 
the knots, as are its derivatives, but application 
of appropriate constraints to the coefficients 
not only makes the function continuous, but 
guarantees continuity of its first and second 
derivatives. The constraints required for this 
purpose are: 

(5) a2 = aj + bj ( X x - j g + c, (X, - X«,)2 + dt (X, - X0)
3 

b2 = b, + 2Cl (X, - X0) + 3d! (Xx — X0)
2 

c2 = c 1 + 3 d 1 ( X 1 - X 0 ) 
a3 = a2 + b2(X2 - Xi) + c2 (X2 - X^2 + d2(X2 - Xx)

3 

b3 = b2 + 2c2 (X2 - Xi) + 3d2 (X2-X!)2 

c3 = c2 + 3d 2(X 2 — Χχ) 

The constraints on the ai equate the values 
of the left and right branches of the function 
at the knots. The constraints on the bj equate 
the slopes of the right and left branches at 
the knots, while constraint of the ci does the 
same for the second derivatives. 

At this point it facilitates the exposition to 
consider the case of equal intervals, so let 
(X1-X0)^(X2—X1)=(X3—X2)=w. Substitution 
of w into (5), and the result into (4) yields, 
after collecting terms with the same coefficient: 

(6)Y=a1+b1(X-X0) 
+c1{(X-X0)

2D1+(w+X-X1)
2D2 

+(2w +X-X2)
2D3} 

-f d^CX-X^D^ [w3+ 3 w(X-X!)2+ SwtX-X^Pa 
+ [7w3 + 9w2 (X—X2) + 3w(X—X2)

2]D3} 
+d2{(X—X3)

3D2 + [w3 + w2 (X—X2) 
+ 3w(X-X2)

2jD3} 
+ d3(X-X2)

3D3 
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The task of fitting a spline function is now 
seen as a straightforward multiple regression 
of Y on a set of five composite variables. Once 
the data have been transformed to yield the 
required five variables, the regression directly 
yields the desired values of av b19 c19 d15 d2 and 
d3. The remaining coefficients of (4) are readily 
obtained by substituting these values into (5). 

By some additional manipulation*, however, (6) 
may be further simplified to yield an expres­
sion that not only is easier to use in practice, 
but which readily lends itself to generalization 
to a larger number of intervals. For this pur­
pose, we define a new set of dummy variables, 
D* and D*with the property that D,*=l, if and 
only if X> Xi, otherwise, Df=0. That is, D^ 
has value 0 until X reaches X15 and is thereafter 
equal to 1. D* is equal to 0 until X reaches X2 

and is thereafter equal to 1. Employing this 
notation, it can be shown that (6) is equivalent 
to 

(7) Y = a i + bi (X-Xo) + ^(Χ-Χο)* + diCX-Xo)3 

+ (ά,-âd (X-X1)3Dl*+(d3-da)(X-X2)3D* 

Like (6), expression (7) is a multiple regression 
on five composite variables. The regression 

* We acknowledge the contribution of Mr. James Coulter of 
Michigan State University in pointing out how equation (6) could 
be simplified to (7). 

21 



coefficients directly yieid ax, bv cx and d15 and 
values of d2 and d3 are readily calculated from 
the two final coefficients. 

The regression procedure itself is readily 
carried out by any standard least-squares re­
gression package. Moreover, goodness of fit, 
significance tests, and other related statistics 
for the spline function are those obtained in 
the usual fashion from the multiple regres­
sion program. 

Spline Functions Defined 
on More than Three Intervals 

When more than four knots and three inter­
vals are to be employed in fitting the spline 
function, the procedure is merely extended to 
incorporate additional branches of the function, 
related to each other by additional constraints. 
The process of deriving the required regression 
equation requires only a measure of patience, 
and the result is a generalization of (7). 

A spline function fitted to k intervals de­
fined by knots placed at X0, X 1 ?... Xk+i, with 
corresponding dummy variables D*, D*,... D£, 
is given by a multiple regression in the form 

(8) Y = a i + b^X-Xo) + C l(X-X0)2 + d^X-X«,)3 

k 

+ Σ (di+i—di) (X-Xi)3D* 
i = l 
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Each additional interval used to fit the func­
tion involves an additional variable in the re­
gression equation and the loss of an additional 
degree of freedom in the residual. 

Spline Functions with More 
than One Independent Variable 

Variables in addition to X are easily incor­
porated in the analysis. We may consider two 
situations. In the first case, an additional variable 
Ζ is to be incorporated lin^aHy in the r#»pr*ró_ 
sion. That is, if we represent the spline function 
by Y = S(X), then we want to incorporate Ζ 
additively in the form Y - S(X) -f kZ. This 
is accomplished merely by regressing Y on 
Ζ in addition to the five constructed variables 
in (7) following standard multiple regression 
procedure. 

In the second case, to allow for curvature in 
the Ζ as well as in the X dimension, we may 
incorporate Ζ in the relationship as a spline 
function T(Z) to obtain Y = S(X) + T(Z). To 
arrive at this result, knots Zj are selected on 
the Ζ axis. Again, the intervals thus defined are 
generally, but not necessarily equal, but there 
is no special reason why there should be the 
same number of intervals on the Ζ as on the 
X axis. Nor, for that matter is it required that 
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the polynomials pieced together on the Ζ di­
mension be of the same order as those employed 
in the X direction although the cubic is the 
most generally useful. In any event, continuity 
of the function in the Ζ dimension is assured 
by application of constraints exactly as in the 
case of X. For the sake of illustration, suppose 
the Ζ axis has been divided into equal segments 
by knots Z0, Zx Z2 and Z3, defining three inter­
vals of uniform width equal to v. As before, 
we now splice together three cubic polynomials 
in Ζ to add to those in X to obtain: 

(9) Y = S(X) + fx (Z - Z0) + & (Z - Z0Y 
+ hi ( Z - Z0)3 + (h2 - hj) (Z - ZtfE* 

+ ( h 3 - h 2 ) ( Z - Z 2 ) E * 

As in (7), E* is a dummy variable with value 
zero until Ζ reaches Zi, and value 1 thereafter. 
S(X) represents (7) above, so (9) is a multiple 
regression of Y on a set of 10 composite vari­
ables. From there on, the regression procedure 
is straight forward. 

The scheme is plainly generalizable. Addi­
tional variables can be included additively along 
with as many spline functions as desired, up 
to the limits of data availability and theoret­
ical meaning. 
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Measures of Partial Correlation 
Significance Tests and Other Statistics 

In what follows it is convenient to adopt a 
special notational convention: Y= S(X) + Uj 
and Y = T(Z) + u2 will represent regressions 
in which Y is approximated by, respec­
tively, a spline function of X alone, and a 
spline function of Ζ alone, whereas Y = S* (X) + 
T*(Z) + u12 will represent a regression like (10) 
in which Y is approximated by additive splines 
in X and Z. 

Coefficients of partial determination asso­
ciated with S*(X) and T*(Z) respectively can be 
calculated and their significance tested by com­
paring residual sums of squares as in an anal­
ysis of variance table : 

Sum of squares d.f. Mean squares 

Residual from S(X) Ση Ν - 6 

Residual from S*(X)+T#(Z) Σιι* Ν-11 Eu2

2/(N-ll) 

Contribution of T*(Z) Σ\ι*-Ση* 5 (Ση-Σ\ι*)[5 
V ' 1 12 V 1 W1 

Partial R2 associated with Τ* (Z) is calculated 
as the ratio of the contribution of Τ* (Z) to the 
residual from S(X). Its significance is tested by 
the F ratio of the mean square of the contri­
bution of T*(Z) to the mean square residual 
from S*(X) + T*(Z). To examine the contribu-
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tion of S* (X), merely interchange S(X) and 
T(Z) in the table. 

Use of standard regression procedures to fit 
spline functions also makes it possible to apply 
Durbin-Watson tests for auto correlation of 
residuals in the usual way. 

Example : Interest Rate as a 
Function of Money Supply and Inflation 

As an example of application of the proce­
dures, we explore the three-month Treasury bill 
rate (R) as a function of two variables: the ra­
tio of money supply to GNP (M/GNP) both 
expressed in current dollars, and the rate of 
inflation (I), using quarterly data drawn from 
the period 1952-1970. Money supply is defined 
in the narrow sense as the sum of demand de­
posits and currency outside banks. Inflation 
rate was measured as the annual percentage 
increase in GNP deflator (Pt) taken over the 
preceding four quarters. That is, It = 100(Pt— 
Pt-4) / Pt-4. Since rising prices directly affect 
the dollar value of nominal GNP, the variable 
M/GNP already contains one aspect of infla­
tion. In addition, however, past inflation rates 
influence expected future inflation rates and 
hence exert an independent influence over in­
terest rates. To capture this effect, inflation rate 
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is entered into the equation with a 1-quarter 
lag. 

Because of the definition of It and its 1-quar­
ter lag, we are left with 71 quarterly observations 
extending from the second quarter of 1953 
through the last quarter of 1970. Over this 
period, M/GNP varied from a high of slightly 
over .36 to a low of nearly .20. This range was 
divided into three equal segments by knots 
established at M/GNP=.2011, .2551, .3091 and 
.3631, forming three intervals of uniform 
width equal to .0540. The range of ΪΛ was 
formed into intervals by knots established 
at 1.!= .273, 2.089, 3.905 and 5.721, with uni­
form interval equal to 1.816. 

Additive spline functions in M/GNP and I n 

were formulated into a multiple regression as 
in (9). Composite variables were generated and 
the regression was fitted by TSP. If we repre­
sent the composite variables involving M/GNP 
by xv...,x51 and those embodying I x by z1,...,z^, 
we can express the result as 

(10) R = 4.020—11.594xj +68.846x2—1684.86x3 

+ 4180.47x4—4224.56x5—1.665ζχ + 1.611z2 

— .3454z3 + .4327z4—.0516z5. 

TotalR2=.92withF(10.65)=78.8,andDW=1.15. 
Partial R2 for S(M/GNP) was .72; for T ^ ) , 
partial R2 = .53; both were highly significant. 
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Calculated curves are depicted in Figures 3 
and 4. Given the rate of inflation, the relation­
ship of bill rate to M/GNP appears as in Figure 
3. Figure 4 shows the bill rate as increasingly 
responsive to inflationary expectations as in-

F1GURE 3 
TREASURY BILL RATE AS A FUNCTION 

OF M/GNP (INFLATION RATE=2 PERCENT) 
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flation rates rise, but what do we make of the 
little hook at the lower end of the function? 
The perverse response may, of course, be an 
accident of the data, and, in fact, when we tested 
the improvement of R = S* (M/GNP) + T* (LJ 
over the form R=S(M/GNP)+ kl.1? in which 
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FIGURE 4 
TREASURY BILL RATE AS A FUNCTION 

OF INFLATION (M/GNP=25) 
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inflation is treated as an additive linear variable, 
we found the difference was not statistically sig­
nificant. In any event, serious study of the 
relationship would entail much more careful 
representation of the dynamics of inflationary 
expectations than have been attempted here. 
In particular, it should be recognized that the 
relationship approximated by (10) is only one 
equation in a complex system in which interest 
rates, inflation rates, GNP, unemployment, and 
even—to a degree—the money supply itself are 
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simultaneously determined. Nothing about the 
use of spline functions alters, in any way, the 
familiar problems of estimation that arise under 
these circumstances. In a careful research pro­
ject, (10) would probably be fitted by two-stage 
least-squares or some other consistent method. 
This is readily done, for once the spline function 
is recognized as a regression the procedure is 
seen to be amenable to all the standard varia­
tions. 

Modified Spline Functions 

There is nothing about either the theory or 
the practice of piece-wise regression that re­
quires that all individual segments be fitted by 
polynomials of the same degree, and for cer­
tain purposes it is useful to employ different 
degrees in different segments. An interesting 
example occurs in the relationship of fertility to 
per capita income as revealed by data from a 
cross-section of nations. Although there is 
good reason to suppose that fertility declines 
with rising income among very poor developing 
nations, it is also clear that once nations have 
reached a certain stage of development, fertil­
ity is likely to be little affected by further income 
increases. Among developed nations differences 
in fertility are primarily, if not entirely, the 
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result of other factors, and any effort to relate 
them to income will yield spurious results. 

To take advantage of the flexibility of the 
spline function at low income levels, and yet 
to avoid spurious relationships at high income, 
a spline function can be estimated under the 
additional constraint that its value be constant 
for incomes above a specified level. For this 
purpose, knots are established at x0, x15 x2, and 
x3 and the function is fitted in the form 

(il) Y = [&1 + Μ Χ - χ 0 ) + C l (X-x 0 ) 2 

+ d 1 ( X - X 0 ) 3 ] D 1 

+ [a2 + b 2 (X-X 1 ) + c 2 ( X - X x ) 2 

+ d 2 ( X - X 1 ) 3 ] D 2 

+ [ a 3 + b 3 ( X - X 2 ) + c 3 ( X - X 2 ) 2 

+ d 3 ( X - X 2 ) 3 ] D 3 

+ a 4 D 4 

where the Xj are equally spaced knots on the 
GNP per capita axis, and the Di are defined as 
before, to have value 1 in the i-th interval and 
zero everywhere else. The value of D 4 is 1 for 
all values of GNP per capita that exceed X3. 

Although proper restriction of the coeffi­
cients of (11) would produce a continuous func­
tion with continuous first and second deriv­
atives, it would impose an unnecessarily se­
vere constraint on the spline function to force 
the second derivative of the cubic polynomial to 
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zero at X3. We therefore restrict the values of 
the coefficients of (11) to produce a continuous 
function with continuous first derivative through­
out the range, but whose second derivative 
may be discontinuous at X3. The result is still 
a smooth function, although not so "deeply" 
smooth as otherwise. 

If, as before, we represent the uniform in­
terval by w, the necessary constraints are 

(12) a! + wbx -f- w 2^ + wMj = a 2 

b>! + 2WC! + 3^2άχ — b 2 

Cj + 3wdx = c 2 

a2 + wb2 + w2c2 + w3d2 = a 3 

b 2 + 2wc2 + 3w2d2 = b 3 

c2 + 3wd2 = c 3 

-( l/3w 2 ) (b3 + 2wc3) = d 3 

a 3 + wbe + w2c3 4- w3d3 = a4 

When (12) is inserted into (11) and terms with 
like coefficients collected, we have, after some 
simplification 

( 1 3 ) Y = a i + ^ { ( Χ - Χ 0 ) ( 1 - ο 4 ) - ( 1 / 3 Ν ν 2 ) ( X - X 2 ) 3 D 3 

+ (8/3)wD4} 

+ C l{(X-X0)2 (l-D 4)+(2/w) (X-X 2 ) 3 D 3 +7w 2 D 4 } 

+ ^ { ( X - X o ) 3 (1 - D 4 ) - 9 (X-X 2) 3D 3+18w 3D 4} 

+ ( d 2 - d 1 ) { ( X - X 1 ) 3 ( D 2 + D 3 ) - 4 ( X - X 2 ) 3 D 3 

+ 4wD4} 

As expressed in (13), the desired relationship 
becomes a multiple regression of Y on four 
composite variables. It is interesting to note 
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that fewer composite variables are required to 
estimate the modified spline function than 
were needed without the modification. The 
reason is that although there is one more pa­
rameter to be estimated in (11) than in (4), the 
additional parameter is accompanied by two 
additional constraints, which reduces by one 
the number of coefficients to be estimated. 

To estimate the coefficients of (13), we em­
ployed total fertility rates (TFR) for a sample 
of 59 nations. The fertility data were those 
collected for the project "Regression Estima­
tion of Fertility" (U.S. National Institute for 
Child Health and Human Development Grant 
No. HD—09051) and were supplied to us by 
the principal investigator, Dr. James A. Pal-
more. Data for GNP per capita were taken 
from Suits (1973). Knots were established at 
values of GNP per capita equal to 0, $500, 
$1,000 and $1,500, and four composite vari­
ables x1?...,x4 were constructed as required. 

Because of the strong influence of religion 
and culture on fertility, however, two additional 
variables were included in the regression: 
a dummy variable ISLAM that assumed the 
value 1 for all Islamic nations and zero for all 
others, and a second dummy variable SP that 
assumed the value 1 for all Spanish or Portu­
guese speaking nations. The composite variables 
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were constructed and the regression was fitted 
using the SPSS package. The regression result 
was: 
(14) TFR = 8.395 - 21.624x1 + 36.944x2 - 24.880x3 

+ 28.374x4 + .834 ISLAM -(- 1.287SP. Total R2 

= .72, with F(6,51) = 22.3. Partial R2s were for 
S(GNP/N), .56, for ISLAM, .05, for SP, .18. AU 
were highly significant. 

Calculated fertility rates for nations that 
were neither Islamic nor Spanish or Portu­
guese speaking are plotted in Figure 5. The chart 

FIGURE 5 
TOTAL FERTILITY RATE AS A FUNCTION 
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shows a sharp fertility decline among develop­
ing nations as incomes rise, but the rate of 
decline steadily diminishes, approaching zero 
near $1,000. It is interesting to note that fertility 
appears to become constant at income levels 
well below those at which the constraint be­
comes effective. 

Concluding Remarks 

It has been our purpose in this article to 
demonstrate how spline functions can be fitted 
with standard regression procedures. Although 
our examples have been limited to functions 
fitted to only three intervals, the same princi­
ples apply to any desired number. 

Although it is a procedure of great promise, 
the spline function has important limitations. 
Such functions are most useful when data are 
uniformly distributed throughout the observed 
range. They work best when the scatter of ob­
servations is uniformly dense like those depic­
ted in Figures 1 and 2 above. This uniformity 
of distribution maintains a uniformly close 
discipline over the function. Absence of this 
uniformity, that is, thin patches, sizeable gaps, 
or isolated points, reduces the discipline and 
the function is free to twist and squirm through 
the sparce parts of the data to yield spurious 
curvature. 
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As a second important limitation, spline 
functions are particularly ill-adapted to extrap­
olation beyond the observed range of data. 
As every student is warned, regression equations 
in general are unreliable guides to the world 
beyond the observed range to which they were 
fitted, but spline functions are especially poor 
in this regard. Properly speaking, indeed, the 
spline function is not even defined outside the 
range to which it has been fitted, unless, perhaps, 
under constraint of theoretical restrictions such 
as those applied to the modified spline. Because 
of their close ties to the observed range, spline 
functions may prove to be of limited usefulness 
in econometric models designed for forecasting 
and related purposes. 

On the other hand, the spline function con­
stitutes a simple and convenient way to approx­
imate functions with complicated curvature. 
At its best the cubic spline approaches the 
statistical ideal of a regression technique that 
can approximate any relationship without pre-
specification of its mathematical form. As 
such, it will prove a powerful, yet relatively 
inexpensive addition to the tool box of standard 
statistical methods. 

36 



\ 

REFERENCES 

BARTH, J., A. KRAFT and J. DRAFT, "Estimation of the l i ­

quidity Trap Using Spline Functions," Review of Economics 
and Statistics, May 1976: 218-222. 

BUSE, A. and L. LIM, "Cubic Splines as a Special Case of Re­
stricted Least Squares," Journal of the American Statistical 
Association, March 1977: 64-68. 

MCGEE, V. and W. CARLTON, "Piece-wise Regression," Journal 
of the American Statistical Association, September 1970: 1109-
1124. 

POITIER, D. J., "Piece-wise Regression Using Cubic Splines," 
Journal of the American Statistical Association, September 
1973: 515-524. 

, The Econometrics of Structural Change, North 
Holland Publishing Co., 1976. 

SUITS, D. B., Principles of Economics, Harper and Row, 1973. 

37 





IN THE SAME SERIES 

1. ANDREAS G. PAPANDREOU, Planning Resource Allocation 
for Economic Development, (1962). 

2. FREDERIC E. BALDERSTON, The Evolution of Management 
Sciences, (1962). 

3 . ADAM A. PEPELASIS, Les Problèmes de la Main d'Oeuvre en 
Grèce dans le Cadre du Marché Commun, (1962). 

4. GEORGE COUTSOUMARis, The Location Pattern of Greek 
Industry, (1962). 

5. MILTON FRIEDMAN, Post War Trends in Monetary Theory 
and Policy, (1963). 

6. JAN TINBERGEN, The Trend Towards Integration, (1963). 

7. ANNA KOUTSOYIANNI-KOKKOVA, Production Functions for 
the Greek Industry, (1963 - in Greek only). 

8. ADAM A. PEPELASIS, Labour Shortages in Greek Agricul­
ture, 1963-1973, (1963). 

9. DIOMEDES PSILOS, The Choice of Financial Assets in Greece, 
(1963). 

10. Nicos DEVLETOGLOU, Montesquieu and theWealth of Nations, 
(1963). 

1 1 . ROBERT G O R D O N , Some Thoughts on the Recent Slow Growth 
of the American Economy, (1964). 

12. PAN A. YOTOPOULOS, The Elasticity of the Labour Supply 
Curve: A Theory and an Evaluation for Greek Agriculture, 
(1964). 

13 . RICHARD M. WESTEBBE, Saving and Investment in Greece, 
(1964). 

14. RALPH TURVEY, Description of the Greek Tax System, 
(1964 - in Greek only). 

15. G. C. ARCHIBALD, Investment and Technical Change in 
Greek Manufacturing, (1964). 

39 



16. G. C. ARCHIBALD, industrialisation and Capital Require­
ments in Greece, (1964). 

17. JOHN HENRY MERRYMAN, Some Problems of Greek Shore-
land Development, (1965). 

18. KENNETH J. ARROW, Statistical Requirements for Greek 
Economic Planning, (1965). 

19. A. FATOUROS, Legal Aspects of the Problem of Attracting 
and Guaranteeing Foreign Private investment, (1965 - in 
Greek only). 

20. GERHARD WEISSER, Grenzen und Probleme der Planung, 
(1965). 

21. ROBERT EISNER, Some Factors in Growth Reconsidered,{l96&). 

22. JEROME ROTHENBERG, An Approach ίο the Welfare Anal­
ysis of Intertemporal Resource Allocation, (1967). 

23. The General Frame of Regional Development, (1973-in 
Greek only). 

24. HELMUT REICHARDT, Optimization Problems in Planning 
Theory, (1971). 

25. GEORGE D. DEMOPOULOS, Monetary Policy, Unemployment 
and Wage Rates: The U.S. Postwar Experience, (1971). 

26. K. P. PRODROMlDis, Forecasting Aggregate Consumer Ex­
penditure in Greece: A Long-Run Analysis, (1973). 

27. CARL S. SHOUP, The Value-Added Tax, (1973). 

28. THEODORE P. LIANOS and KYPRIANOS P. PRODROMIDIS, As­

pects of Income Distribution in Greece, (1974). 

29. PANAYOTIS G. KORLIRAS, The Economics of Disorder, (1977). 

30. LAWRENCE R. KLEIN, Project LINK, (1977). 

31. GEORGE N. PARASKEVOPOULOS, An Econometric Analysis 

of International Tourism, (1977). 

40 






